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On the through-thickness critical current density of an YBa2Cu3O7−x film
containing a high density of insulating, vortex-pinning nanoprecipitates
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Using sequential ion milling the authors have studied the thickness dependence of the critical
current density Jc�H� of a single crystal 1 �m thick YBa2Cu3O7−x thin film containing �5 vol % of
insulating Y2BaCuO5 �Y211� nanoparticles in order to better understand how to obtain high critical
currents in thick films. Except very near the interface where the defect density was enhanced, Jc�H�
in the body of the film was uniform and independent of thickness with a high maximum pinning
force of 8.8 GN/m3 at 77 K. The authors conclude that the nanoscale Y211 precipitates result in
strong, three-dimensional pinning characterized by a pin spacing of �30 nm, much smaller than the
film thickness. © 2007 American Institute of Physics. �DOI: 10.1063/1.2749437�

YBa2Cu3O7−� �YBCO� is a very versatile supercon-
ductor into which many types of vortex-pinning centers can
be introduced.1–6 As the limits to the current-carrying capa-
bility of this technological compound are explored, the com-
monly observed decline of Jc with increasing film thickness t
�Refs. 7–12� is still not well understood. Such a thickness
dependence may result from the transition from the two-
dimensional pinning of rigid vortex lines in thinner films to
the three-dimensional �3D� pinning of deformable vortices
even for a completely uniform pinning nanostructure.13,14

However, there are also many reports of microstructures
varying across YBCO films, which can also cause a
thickness-dependent Jc�t�. For example, Foltyn et al.,15 who
studied single crystal YBCO films grown by pulsed laser
deposition �PLD� without any added second phase, found
that the thickness dependence of the average Jc can result
from a decrease of the local Jc, out to a t of �0.65 �m,
followed by a thickness-independent Jc. They ascribed the
high Jc at the interface at the CeO2 cap layer to a 20 nm
thick caging array of interface dislocations which strongly
enhance local vortex pinning.

We recently investigated the thickness dependence of Jc
in YBCO coated conductors made by the metal organic
deposition �MOD� process and found no evidence for dimen-
sional pinning crossover as the reason for the observed de-
cline of Jc with increasing t.16 Analysis of the thickness de-
pendence of Jc�H�, the normal state resistivity, and the
microstructure showed that MOD films exhibit microstruc-
tural degradation which grows as the films thicken, produc-
ing a thickness-dependent reduction of the effective current-
carrying cross section Aeff. High angle grain boundaries,17–21

porosity,12,16 insulating phases,22 or other macroscopic planar
obstacles23 reduce the cross section for current flow. In fact,
the MOD films exhibited both strong single vortex pinning
and a thickness-dependent porosity, which together result in
the quasilinear decay of the average Jc with increasing t.

To better test the physical mechanisms at play, we have
studied the thickness dependence of Jc in a PLD YBCO film
to which insulating Y2BaCuO5 �Y211� particles were delib-

erately added. Our hypothesis was that the addition of insu-
lating nanoparticles should yield a thickness-independent Jc,
since strong pins should enable each vortex segment to be
pinned independently. In this letter, we show that such pre-
cipitates do take YBCO into the very desirable strong 3D
pinning regime, in which the longitudinal pinning correlation
length is much shorter than the film thickness, and the local
Jc is then independent of t. In principle, this permits a high
and a thickness-independent Jc in thick films, provided that
thickness degradation of the current-carrying cross section
and variation of the second-phase vortex-pinning structure
are avoided.

An YBCO film was deposited by PLD on a single crystal
SrTiO3 substrate. The Y211 nanoparticles were introduced
by alternate deposition of Y211 ��0.8 nm� and YBCO
��16.5 nm�.1 A 50 �m wide �400 �m long bridge was pat-
terned and was then sequentially thinned with 500 eV Ar
ions impinging at 45° while the sample was cooled to
�230 K. After each milling step, Jc�H� was measured
�1 �V/cm criterion� at 77 K for magnetic fields up to 10 T
applied perpendicular to the film surface. The full thickness
of the YBCO was 1.0 �m, and the thickness of each thinned
sample was measured with a Tencor profilometer. Cross-
section transmission electron microscopy �TEM� imaging
was performed in a Philips CM200UT.

This sample exhibited a full-thickness Jc�0 T,77 K� of
3.4 MA/cm2, Tc of 90.0 K defined at the onset of resistance,
and an irreversibility field Hirr�77 K� of 8.8 T measured at
Jc=100 A/cm2. The maximum pinning force Fp,max was
�8.8 GN/m3.

Figure 1 shows the Jc�t� data as a function of the residual
thickness for each milling step. The critical current per unit
width Ic

* shown in the inset of Fig. 1 exhibits a linear depen-
dence on t, which extrapolates to a nonzero value of Ic

* at
zero t. Such a linear dependence is inconsistent with the
collective pinning scenario. Instead, the Ic

*�t� data unambigu-
ously indicate a uniform local Jc in the bulk of the film, and
a thin, higher Jc layer near the substrate. From the constant
slope of Ic

*�t�, we calculated the local Jc�3.1 MA/cm2 in
the bulk of the film. The global Jc�t�=Jc0�1+ t0 / t� thus in-
creases as t decreases because of the very higha�Electronic mail: sikim@asc.magnet.fsu.edu
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Jc�7.1 MA/cm2� of the 60–70 nm thick interface layer. The
pinning structure in this highly defected interface layer will
be addressed below.

The Jc�H� at 77 K for different thicknesses are shown in
Fig. 2�a�. The overall shape of the Jc�H� curves is rather
insensitive to t, although the magnitude does increase at
small t due to the high Jc interface layer. For comparison,
Jc�H� curves for a 280 nm YBCO film grown by PLD on a
single crystal �La0.30Sr0.70��Al0.65Ta0.35�O3 �LSAT�
substrate24 and for 1 �m YBCO film grown by MOD on a
single crystal yttrium-stabilized zirconia21 �YSZ� are also

shown. Neither the PLD nor MOD film had deliberately
added second-phase particles, although the MOD films do
have a complex pinning microstructure that contains pores,
stacking faults, and Y2O3 particles. The strong vortex pin-
ning of the present sample is quite evident. It results in much
higher Jc values at all fields above a few tenths of a tesla,
although the self-field Jc values of all three samples vary
only from 3.4 to 5.3 A/cm2. The Hirr are essentially inde-
pendent of t �inset of Fig. 2�a��, similar to what we found for
the MOD film with strong pinning16 but quite different from
the decreasing Hirr�t� in the PLD film on LSAT.24 The
thickness-dependent bulk flux pinning force curves
Fp�H�=�H�Jc�H� are shown in Fig. 2�b�. The magnitude
of the Fp,max increases as t decreases because of the contri-
bution of the strong-pinning interface layer. However, even
at full thickness, Fp,max=8.8 GN/m3 is more than two times
higher than Fp,max=4.1 GN/m3 for a 1 �m MOD film,16,21

while at the thinnest layer measured, Fp,max of our samples
reaches 13.8 GN/m3. However, the inset of Fig. 2�b� clearly
shows that the normalized pinning forces Fp /Fp,max plotted
against the reduced fields H /Hirr are essentially independent
of t, consistent with our conclusion that the pinning mecha-
nisms are independent of t.

Figure 3 shows cross-sectional TEM images, which re-
veal a high density of Y211 precipitates �spheres with dark

FIG. 1. Self-field 77 K Jc�t� data as a function of the residual thickness after
ion milling. The solid line represents Jc0�t�=Jc�1�+ t0�t�. The inset shows the
critical current per unit width Ic

*�0 T,77 K�, which exhibits a linear depen-
dence on t with a nonzero intercept at zero t.

FIG. 2. �a� Jc�H� at 77 K for different thicknesses. Jc�H� curves for a
280 nm YBCO film grown by PLD on a single crystal LSAT substrate
�Ref. 24� and for a 1 �m YBCO film made by MOD on a single YSZ crystal
�Refs. 16 and 21� are shown for comparison. The inset shows the irrevers-
ibility field Hirr, determined at Jc=100 MA/cm2, as a function of t. �b� Bulk
pinning force plot FP�H� for different thicknesses. The inset shows that the
normalized pinning force curves FP�H� /Fmax= f�H /Hirr� do not change as
thickness changes.

FIG. 3. �a� Cross-sectional TEM image shows a high density of randomly
distributed Y211 nanoprecipitates. �b� Close-up view near the interface
layer. Additional defects are present near the interface, especially higher
density of stacking faults. �Some stacking faults, Y211 precipitates, and
threading dislocations are labeled.� The YBCO matrix is highly distorted
because of tangled stacking faults with Y211 precipitates and threading dis-
locations, producing high strain fields and lattice buckling.

252502-2 Kim et al. Appl. Phys. Lett. 90, 252502 �2007�
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contrast� and stacking faults �horizontal black lines�. Typical
sizes of the Y211 precipitates are �4–8 nm �inset of
Fig. 3�a��; however, the effective pinning size including
strain field is �10 nm. As a result, the nominal volume frac-
tion of the precipitates of �5 vol % effectively increases to
�10 vol % if the strained regions are included. Within each
thickness slice, the Y211 precipitates are rather randomly
distributed in the YBCO, the average spacing being �30 nm
along the c axis and �10 nm in the ab plane. �inset of
Fig. 3�a��. However, separation between the nanoprecipitates
along the c axis may be smaller within the 60 nm interface
layer where the stacking fault density is much larger than in
the body of the film. It is shown in Fig. 3�a� that the Y211
tend to cluster and tangled with the stacking faults.
Figure 3�b� also indicates that there are several threading
dislocations, which are cut into short segments by the stack-
ing faults, making a dense defect network near the interface,
a structure which is consistent with the much stronger pin-
ning near the interface.

Our experiment was motivated by the idea that the Y211
nanoprecipitates would provide strong 3D pinning so that
vortices are chopped into separate, individually pinned
segments.16 This condition is indeed fulfilled as indicated by
the linear Ic

*�t� behavior which implies a thickness-
independent local Jc in the bulk of the film, and by the very
high Fp,max of �8.8 GN/m3 evaluated over the whole film
thickness.

To check if these Jc values are consistent with the ob-
served precipitate density, we estimated the maximum Jc
which would be determined by depinning of elliptical vortex
segments whose ends are fixed by neighboring nanoprecipi-
tates with mean spacing d. The Jc can then be estimated
from25

Jc =
�0

2��0�a�cd
ln

d

�c
. �1�

Here, �0 is the flux quantum, �0 is the magnetic permeabil-
ity, �a and �c are the London penetration depths in the ab
plane and along the c axis, respectively, and �c is the coher-
ence length along the c axis. If we take �a=0.4 �m,
�c=2 �m, and �c=1 nm at 77 K with the observed average
mean Y211 separation d of �30 nm, Eq. �1� gives
Jc�3.7 MA/cm2, in agreement with the observed local Jc of
�3.1 MA/cm2 away from the interface. The interface layer
exhibits even stronger pinning where we expect an enhanced
Y211 precipitate density. According to Eq. �1�, the measured
self-field Jc value of 7.1 MA/cm2 at the interface layer im-
plies a mean pin separation of �10 nm, consistent with the
smaller pin separation. Moreover, as shown in Fig. 3�b�, the
stacking faults have correlated partial dislocations tangled
with the Y211 precipitates and the threading dislocations,
producing strong strain fields, which may enhance the pin-
ning further. This strong-pinning behavior with very high
Fp,max of 13.8 GN/m3 reaches about two-thirds of the
present champion samples made with the artificial pinning
center distributions.5,6,26

The production of uniform, dense arrays of nanoprecipi-
tates is a natural route to a uniform through-thickness,
vortex-pinning microstructure with very high and thickness-
independent Jc. The significant potential of nanoscale pin-

ning engineering is well illustrated both by the results of this
work and by the previous spectacularly high Jc values for the
artificial pinning center structures.5,26 In the present case,
�5 vol % of insulating Y211 particles of �4–8 nm, with
separations of 10–30 nm, produce strong 3D pinning indeed.

This work was supported by the AFOSR-supported
MURI “Critical Scientific Challenges of Coated Conductors”
Contract No. F49620-01-1-0464.
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